2016 US EPA National Emissions Inventory (NEI) data
We have a data loader for CMAQ-formatted monthly US National Emissions Inventory data for year 2016,NEI2016MonthlyEmis.
Download Configuration
Because there is an issue with the EPA's FTP server that we download the data from you may need to set the following environment variable before using it:
In Julia:
ENV["JULIA_NO_VERIFY_HOSTS"] = "gaftp.epa.gov"or in a bash shell:
export JULIA_NO_VERIFY_HOSTS=gaftp.epa.govEquations
This is what its equation system looks like:
using EarthSciData, EarthSciMLBase
using ModelingToolkit, DynamicQuantities, DataFrames
using ModelingToolkit: t
using DynamicQuantities: dimension
using Dates
domain = DomainInfo(
DateTime(2016, 5, 1), DateTime(2016, 5, 2);
lonrange = deg2rad(-115):deg2rad(2.5):deg2rad(-68.75),
latrange = deg2rad(25):deg2rad(2):deg2rad(53.7),
levrange = 1:10,
u_proto = zeros(Float32, 1, 1, 1, 1)
)
emis = NEI2016MonthlyEmis("mrggrid_withbeis_withrwc", domain)\[ \begin{align} \mathtt{ACET}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ACET\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ACROLEIN}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ACROLEIN\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ALD2}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ALD2\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ALD2\_PRIMARY}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ALD2\_PRIMARY\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ALDX}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ALDX\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{APIN}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{APIN\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{BENZ}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{BENZ\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{BPIN}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{BPIN\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{BUTADIENE13}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{BUTADIENE13\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{CH4}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{CH4\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{CH4\_INV}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{CH4\_INV\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{CL2}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{CL2\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{CO}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{CO\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{CO2\_INV}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{CO2\_INV\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ETH}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ETH\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ETHA}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ETHA\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ETHY}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ETHY\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ETOH}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ETOH\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{FORM}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{FORM\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{FORM\_PRIMARY}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{FORM\_PRIMARY\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{HCL}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{HCL\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{HONO}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{HONO\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{IOLE}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{IOLE\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{ISOP}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{ISOP\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{KET}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{KET\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{MEOH}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{MEOH\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{N2O\_INV}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{N2O\_INV\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NAPH}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NAPH\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NH3}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NH3\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NH3\_FERT}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NH3\_FERT\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NO}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NO\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NO2}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NO2\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NOX}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NOX\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NR}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NR\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{NVOL}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{NVOL\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{OLE}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{OLE\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PAL}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PAL\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PAR}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PAR\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PCA}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PCA\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PCL}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PCL\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PEC}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PEC\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PFE}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PFE\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PH2O}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PH2O\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PK}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PK\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PM2\_5}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PM2\_5\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PMC}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PMC\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PMG}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PMG\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PMN}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PMN\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PMOTHR}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PMOTHR\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PNA}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PNA\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PNCOM}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PNCOM\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PNH4}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PNH4\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PNO3}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PNO3\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{POC}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{POC\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PRPA}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PRPA\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PSI}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PSI\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PSO4}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PSO4\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{PTI}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{PTI\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{SESQ}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{SESQ\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{SO2}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{SO2\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{SOAALK}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{SOAALK\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{SULF}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{SULF\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{TERP}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{TERP\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{TOL}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{TOL\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{UNK}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{UNK\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{UNR}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{UNR\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{VOC\_BEIS}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{VOC\_BEIS\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{VOC\_INV}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{VOC\_INV\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \\ \mathtt{XYLMN}\left( t \right) &= ifelse\left( \mathtt{lev} < 2, \frac{\mathtt{XYLMN\_itp}\left( t + \mathtt{t\_ref}, \mathtt{lon}, \mathtt{lat} \right)}{\mathtt{{\Delta}z}}, \mathtt{zero\_emis} \right) \end{align} \]
Variables
Here are the variables in tabular format:
function table(vars)
DataFrame(
:Name => [string(Symbolics.tosymbol(v, escape = false)) for v in vars],
:Units => [dimension(ModelingToolkit.get_unit(v)) for v in vars],
:Description => [ModelingToolkit.getdescription(v) for v in vars]
)
end
table(unknowns(emis))| Row | Name | Units | Description |
|---|---|---|---|
| String | Dimensio… | String | |
| 1 | ACET | m⁻³ kg s⁻¹ | Model species ACET |
| 2 | ACROLEIN | m⁻³ kg s⁻¹ | Model species ACROLEIN |
| 3 | ALD2 | m⁻³ kg s⁻¹ | Model species ALD2 |
| 4 | ALD2_PRIMARY | m⁻³ kg s⁻¹ | Model species ALD2_PRIMARY |
| 5 | ALDX | m⁻³ kg s⁻¹ | Model species ALDX |
| 6 | APIN | m⁻³ kg s⁻¹ | Model species APIN |
| 7 | BENZ | m⁻³ kg s⁻¹ | Model species BENZ |
| 8 | BPIN | m⁻³ kg s⁻¹ | Model species BPIN |
| 9 | BUTADIENE13 | m⁻³ kg s⁻¹ | Model species BUTADIENE13 |
| 10 | CH4 | m⁻³ kg s⁻¹ | Model species CH4 |
| 11 | CH4_INV | m⁻³ kg s⁻¹ | Model species CH4_INV |
| 12 | CL2 | m⁻³ kg s⁻¹ | Model species CL2 |
| 13 | CO | m⁻³ kg s⁻¹ | Model species CO |
| 14 | CO2_INV | m⁻³ kg s⁻¹ | Model species CO2_INV |
| 15 | ETH | m⁻³ kg s⁻¹ | Model species ETH |
| 16 | ETHA | m⁻³ kg s⁻¹ | Model species ETHA |
| 17 | ETHY | m⁻³ kg s⁻¹ | Model species ETHY |
| 18 | ETOH | m⁻³ kg s⁻¹ | Model species ETOH |
| 19 | FORM | m⁻³ kg s⁻¹ | Model species FORM |
| 20 | FORM_PRIMARY | m⁻³ kg s⁻¹ | Model species FORM_PRIMARY |
| 21 | HCL | m⁻³ kg s⁻¹ | Model species HCL |
| 22 | HONO | m⁻³ kg s⁻¹ | Model species HONO |
| 23 | IOLE | m⁻³ kg s⁻¹ | Model species IOLE |
| 24 | ISOP | m⁻³ kg s⁻¹ | Model species ISOP |
| 25 | KET | m⁻³ kg s⁻¹ | Model species KET |
| 26 | MEOH | m⁻³ kg s⁻¹ | Model species MEOH |
| 27 | N2O_INV | m⁻³ kg s⁻¹ | Model species N2O_INV |
| 28 | NAPH | m⁻³ kg s⁻¹ | Model species NAPH |
| 29 | NH3 | m⁻³ kg s⁻¹ | Model species NH3 |
| 30 | NH3_FERT | m⁻³ kg s⁻¹ | Model species NH3_FERT |
| 31 | NO | m⁻³ kg s⁻¹ | Model species NO |
| 32 | NO2 | m⁻³ kg s⁻¹ | Model species NO2 |
| 33 | NOX | m⁻³ kg s⁻¹ | Model species NOX |
| 34 | NR | m⁻³ kg s⁻¹ | Model species NR |
| 35 | NVOL | m⁻³ kg s⁻¹ | Model species NVOL |
| 36 | OLE | m⁻³ kg s⁻¹ | Model species OLE |
| 37 | PAL | m⁻³ kg s⁻¹ | Model species PAL |
| 38 | PAR | m⁻³ kg s⁻¹ | Model species PAR |
| 39 | PCA | m⁻³ kg s⁻¹ | Model species PCA |
| 40 | PCL | m⁻³ kg s⁻¹ | Model species PCL |
| 41 | PEC | m⁻³ kg s⁻¹ | Model species PEC |
| 42 | PFE | m⁻³ kg s⁻¹ | Model species PFE |
| 43 | PH2O | m⁻³ kg s⁻¹ | Model species PH2O |
| 44 | PK | m⁻³ kg s⁻¹ | Model species PK |
| 45 | PM2_5 | m⁻³ kg s⁻¹ | Model species PM2_5 |
| 46 | PMC | m⁻³ kg s⁻¹ | Model species PMC |
| 47 | PMG | m⁻³ kg s⁻¹ | Model species PMG |
| 48 | PMN | m⁻³ kg s⁻¹ | Model species PMN |
| 49 | PMOTHR | m⁻³ kg s⁻¹ | Model species PMOTHR |
| 50 | PNA | m⁻³ kg s⁻¹ | Model species PNA |
| 51 | PNCOM | m⁻³ kg s⁻¹ | Model species PNCOM |
| 52 | PNH4 | m⁻³ kg s⁻¹ | Model species PNH4 |
| 53 | PNO3 | m⁻³ kg s⁻¹ | Model species PNO3 |
| 54 | POC | m⁻³ kg s⁻¹ | Model species POC |
| 55 | PRPA | m⁻³ kg s⁻¹ | Model species PRPA |
| 56 | PSI | m⁻³ kg s⁻¹ | Model species PSI |
| 57 | PSO4 | m⁻³ kg s⁻¹ | Model species PSO4 |
| 58 | PTI | m⁻³ kg s⁻¹ | Model species PTI |
| 59 | SESQ | m⁻³ kg s⁻¹ | Model species SESQ |
| 60 | SO2 | m⁻³ kg s⁻¹ | Model species SO2 |
| 61 | SOAALK | m⁻³ kg s⁻¹ | Model species SOAALK |
| 62 | SULF | m⁻³ kg s⁻¹ | Model species SULF |
| 63 | TERP | m⁻³ kg s⁻¹ | Model species TERP |
| 64 | TOL | m⁻³ kg s⁻¹ | Model species TOL |
| 65 | UNK | m⁻³ kg s⁻¹ | Model species UNK |
| 66 | UNR | m⁻³ kg s⁻¹ | Model species UNR |
| 67 | VOC_BEIS | m⁻³ kg s⁻¹ | Model species VOC_BEIS |
| 68 | VOC_INV | m⁻³ kg s⁻¹ | Model species VOC_INV |
| 69 | XYLMN | m⁻³ kg s⁻¹ | Model species XYLMN |
Parameters
Finally, here are the parameters in tabular format:
table(parameters(emis))| Row | Name | Units | Description |
|---|---|---|---|
| String | Dimensio… | String | |
| 1 | lon | Longitude | |
| 2 | lat | Latitude | |
| 3 | lev | Level Index | |
| 4 | Δz | m | Height of the first vertical grid layer |
| 5 | t_ref | s | Reference time |
| 6 | ACET_itp⋆ | m⁻² kg s⁻¹ | Interpolated ACET |
| 7 | ACROLEIN_itp⋆ | m⁻² kg s⁻¹ | Interpolated ACROLEIN |
| 8 | ALD2_itp⋆ | m⁻² kg s⁻¹ | Interpolated ALD2 |
| 9 | ALD2_PRIMARY_itp⋆ | m⁻² kg s⁻¹ | Interpolated ALD2_PRIMARY |
| 10 | ALDX_itp⋆ | m⁻² kg s⁻¹ | Interpolated ALDX |
| 11 | APIN_itp⋆ | m⁻² kg s⁻¹ | Interpolated APIN |
| 12 | BENZ_itp⋆ | m⁻² kg s⁻¹ | Interpolated BENZ |
| 13 | BPIN_itp⋆ | m⁻² kg s⁻¹ | Interpolated BPIN |
| 14 | BUTADIENE13_itp⋆ | m⁻² kg s⁻¹ | Interpolated BUTADIENE13 |
| 15 | CH4_itp⋆ | m⁻² kg s⁻¹ | Interpolated CH4 |
| 16 | CH4_INV_itp⋆ | m⁻² kg s⁻¹ | Interpolated CH4_INV |
| 17 | CL2_itp⋆ | m⁻² kg s⁻¹ | Interpolated CL2 |
| 18 | CO_itp⋆ | m⁻² kg s⁻¹ | Interpolated CO |
| 19 | CO2_INV_itp⋆ | m⁻² kg s⁻¹ | Interpolated CO2_INV |
| 20 | ETH_itp⋆ | m⁻² kg s⁻¹ | Interpolated ETH |
| 21 | ETHA_itp⋆ | m⁻² kg s⁻¹ | Interpolated ETHA |
| 22 | ETHY_itp⋆ | m⁻² kg s⁻¹ | Interpolated ETHY |
| 23 | ETOH_itp⋆ | m⁻² kg s⁻¹ | Interpolated ETOH |
| 24 | FORM_itp⋆ | m⁻² kg s⁻¹ | Interpolated FORM |
| 25 | FORM_PRIMARY_itp⋆ | m⁻² kg s⁻¹ | Interpolated FORM_PRIMARY |
| 26 | HCL_itp⋆ | m⁻² kg s⁻¹ | Interpolated HCL |
| 27 | HONO_itp⋆ | m⁻² kg s⁻¹ | Interpolated HONO |
| 28 | IOLE_itp⋆ | m⁻² kg s⁻¹ | Interpolated IOLE |
| 29 | ISOP_itp⋆ | m⁻² kg s⁻¹ | Interpolated ISOP |
| 30 | KET_itp⋆ | m⁻² kg s⁻¹ | Interpolated KET |
| 31 | MEOH_itp⋆ | m⁻² kg s⁻¹ | Interpolated MEOH |
| 32 | N2O_INV_itp⋆ | m⁻² kg s⁻¹ | Interpolated N2O_INV |
| 33 | NAPH_itp⋆ | m⁻² kg s⁻¹ | Interpolated NAPH |
| 34 | NH3_itp⋆ | m⁻² kg s⁻¹ | Interpolated NH3 |
| 35 | NH3_FERT_itp⋆ | m⁻² kg s⁻¹ | Interpolated NH3_FERT |
| 36 | NO_itp⋆ | m⁻² kg s⁻¹ | Interpolated NO |
| 37 | NO2_itp⋆ | m⁻² kg s⁻¹ | Interpolated NO2 |
| 38 | NOX_itp⋆ | m⁻² kg s⁻¹ | Interpolated NOX |
| 39 | NR_itp⋆ | m⁻² kg s⁻¹ | Interpolated NR |
| 40 | NVOL_itp⋆ | m⁻² kg s⁻¹ | Interpolated NVOL |
| 41 | OLE_itp⋆ | m⁻² kg s⁻¹ | Interpolated OLE |
| 42 | PAL_itp⋆ | m⁻² kg s⁻¹ | Interpolated PAL |
| 43 | PAR_itp⋆ | m⁻² kg s⁻¹ | Interpolated PAR |
| 44 | PCA_itp⋆ | m⁻² kg s⁻¹ | Interpolated PCA |
| 45 | PCL_itp⋆ | m⁻² kg s⁻¹ | Interpolated PCL |
| 46 | PEC_itp⋆ | m⁻² kg s⁻¹ | Interpolated PEC |
| 47 | PFE_itp⋆ | m⁻² kg s⁻¹ | Interpolated PFE |
| 48 | PH2O_itp⋆ | m⁻² kg s⁻¹ | Interpolated PH2O |
| 49 | PK_itp⋆ | m⁻² kg s⁻¹ | Interpolated PK |
| 50 | PM2_5_itp⋆ | m⁻² kg s⁻¹ | Interpolated PM2_5 |
| 51 | PMC_itp⋆ | m⁻² kg s⁻¹ | Interpolated PMC |
| 52 | PMG_itp⋆ | m⁻² kg s⁻¹ | Interpolated PMG |
| 53 | PMN_itp⋆ | m⁻² kg s⁻¹ | Interpolated PMN |
| 54 | PMOTHR_itp⋆ | m⁻² kg s⁻¹ | Interpolated PMOTHR |
| 55 | PNA_itp⋆ | m⁻² kg s⁻¹ | Interpolated PNA |
| 56 | PNCOM_itp⋆ | m⁻² kg s⁻¹ | Interpolated PNCOM |
| 57 | PNH4_itp⋆ | m⁻² kg s⁻¹ | Interpolated PNH4 |
| 58 | PNO3_itp⋆ | m⁻² kg s⁻¹ | Interpolated PNO3 |
| 59 | POC_itp⋆ | m⁻² kg s⁻¹ | Interpolated POC |
| 60 | PRPA_itp⋆ | m⁻² kg s⁻¹ | Interpolated PRPA |
| 61 | PSI_itp⋆ | m⁻² kg s⁻¹ | Interpolated PSI |
| 62 | PSO4_itp⋆ | m⁻² kg s⁻¹ | Interpolated PSO4 |
| 63 | PTI_itp⋆ | m⁻² kg s⁻¹ | Interpolated PTI |
| 64 | SESQ_itp⋆ | m⁻² kg s⁻¹ | Interpolated SESQ |
| 65 | SO2_itp⋆ | m⁻² kg s⁻¹ | Interpolated SO2 |
| 66 | SOAALK_itp⋆ | m⁻² kg s⁻¹ | Interpolated SOAALK |
| 67 | SULF_itp⋆ | m⁻² kg s⁻¹ | Interpolated SULF |
| 68 | TERP_itp⋆ | m⁻² kg s⁻¹ | Interpolated TERP |
| 69 | TOL_itp⋆ | m⁻² kg s⁻¹ | Interpolated TOL |
| 70 | UNK_itp⋆ | m⁻² kg s⁻¹ | Interpolated UNK |
| 71 | UNR_itp⋆ | m⁻² kg s⁻¹ | Interpolated UNR |
| 72 | VOC_BEIS_itp⋆ | m⁻² kg s⁻¹ | Interpolated VOC_BEIS |
| 73 | VOC_INV_itp⋆ | m⁻² kg s⁻¹ | Interpolated VOC_INV |
| 74 | XYLMN_itp⋆ | m⁻² kg s⁻¹ | Interpolated XYLMN |